(Gluon) Xception
Xception is a convolutional neural network architecture that relies solely on depthwise separable convolution layers.
The weights from this model were ported from Gluon.
How do I use this model on an image?
To load a pretrained model:
import timm
model = timm.create_model('gluon_xception65', pretrained=True)
model.eval()
To load and preprocess the image:
import urllib
from PIL import Image
from timm.data import resolve_data_config
from timm.data.transforms_factory import create_transform
config = resolve_data_config({}, model=model)
transform = create_transform(**config)
url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg")
urllib.request.urlretrieve(url, filename)
img = Image.open(filename).convert('RGB')
tensor = transform(img).unsqueeze(0) # transform and add batch dimension
To get the model predictions:
import torch
with torch.no_grad():
out = model(tensor)
probabilities = torch.nn.functional.softmax(out[0], dim=0)
print(probabilities.shape)
# prints: torch.Size([1000])
To get the top-5 predictions class names:
# Get imagenet class mappings
url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt")
urllib.request.urlretrieve(url, filename)
with open("imagenet_classes.txt", "r") as f:
categories = [s.strip() for s in f.readlines()]
# Print top categories per image
top5_prob, top5_catid = torch.topk(probabilities, 5)
for i in range(top5_prob.size(0)):
print(categories[top5_catid[i]], top5_prob[i].item())
# prints class names and probabilities like:
# [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)]
Replace the model name with the variant you want to use, e.g. gluon_xception65
. You can find the IDs in the model summaries at the top of this page.
To extract image features with this model, follow the timm feature extraction examples, just change the name of the model you want to use.
How do I finetune this model?
You can finetune any of the pre-trained models just by changing the classifier (the last layer).
model = timm.create_model('gluon_xception65', pretrained=True, num_classes=NUM_FINETUNE_CLASSES)
How do I train this model?
You can follow the timm recipe scripts for training a new model afresh.
Citation
@misc{chollet2017xception,
title={Xception: Deep Learning with Depthwise Separable Convolutions},
author={François Chollet},
year={2017},
eprint={1610.02357},
archivePrefix={arXiv},
primaryClass={cs.CV}
}